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The loop structure plays an important role in many aspects of complex networks and attracts much attention.
Among the previous works, Bianconi et al. �Phys. Rev. Lett. 100, 118701 �2008�� found that real networks
often have very few short loops as compared to random models. In this paper, we focus on the uneven location
of loops which makes some parts of the network rich while some other parts sparse in loops. We propose a
node removing process to analyze the unevenness and find rich loop cores can exist in many real networks such
as neural networks and food web networks. Finally, an index is presented to quantify the unevenness of loop
location in complex networks.
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I. INTRODUCTION

In the last decade, the researches on complex networks
have rapidly developed. At the same time, the loop structure
has attracted much attention. Loops are very important in
complex networks. They cannot only characterize the detail
structure of networks but also relate to the structural corre-
lations, motifs, robustness, and redundancy of pathways, and
affect some dynamical as well as equilibrium critical phe-
nomena of the networks �1,2�. Recently, to avoid the effect
of the loop structure, some researchers even study the acyclic
networks �3,4�.

For the self-avoiding loop, researchers focus mainly on
two aspects: the total number of loops and the dynamic effect
of the loop structure. In the former case, many counting
methods have been proposed �5–11�. In undirected networks,
short loops can be exactly counted in terms of powers of the
adjacency matrix �8�. This method cannot deal with long
loops because the counting equation will become very com-
plicated when facing long loops. In Ref. �9�, combining both
clustering coefficients based on cycle size of three and four,
the authors deduce an expression for estimating cycles of
larger size in undirected networks. Also, they discuss the
applicability of such analytical estimations in some empirical
networks. In directed networks, short loops can be estimated
by using NL� 1

LTr AL while long loops can be calculated by
the entropy �10,11�. Moreover, some researchers analyze sta-
tistics of loops with different length L. They use the Monte
Carlo sampling method to get the frequency and find that the
loop number is sharply peaked around a characteristic loop
length L�. Also, they use L� and the relevant index to char-
acterize the networks �12�. On the other hand, the dynamic
effect of the loop structure has been studied frequently. It has
been pointed out that the loop structure is related to the ac-
tivity in neural networks such as self-sustained activities
�13–15� and synchronization �4,16,17�. Specifically, the self-
sustained activity cannot survive without the loop structure
and the synchronization will be weakened when emerging a

dominant loop in the network. What is more, a scaling be-
havior of loops is used to explain some critical phenomenon
in percolation �18� and loop number is also used as a ranking
method to quantify the role of both nodes and links �19�.

However, many problems about loops still remain unno-
ticed. In the Ref. �11�, Bianconi, Gulbahce, and Motter find
that many real networks have fewer loops than the counter-
part random networks which are a kind of random networks
with the same number of in and out links in each node as the
real networks. Actually, the loops number in different parts
of a network varies according to the function of the regions.
For example, the feedforward part of the neural networks are
sparse of loops �3� while other parts in the brain need loops
to carry out self-sustained oscillation for processing informa-
tion �14,15�. For the food web networks, the loops number in
the metazoan part are relatively small while there are many
short loops among the micro-organisms, called microbial
loops, for fixed carbon repacking and recovery path of eco-
system �20�. Obviously, loops locate unevenly in many real
networks. Some communities of these networks will be rich
in loops while loops will be sparse in other parts. This leads
us to an interesting question: what is the detail organization
of loops location like in the networks? In this paper, we
focus on the unevenness of loops location. We first study the
distribution of loops on single nodes. Then we analyze the
rich loop core phenomenon of uneven loops location by a
node removing process in some real networks. Finally, we
propose an index to measure the unevenness.

II. HETEROGENEOUS DISTRIBUTION
OF LOOPS ON SINGLE NODES

In the first step, we should study the loops on each
single node to help us understand how the loops locate in
the network. For a given network with size N, if we want
to obtain how many loops passing through a specific node,
we can simply remove the node from the network and
count how many loops decreases, the decrement is the num-
ber of loops on this node. As NL is the loops number with

the length L of a network, we denote N̂L�i� as the number
of loops with length L in the network after the node i is*zdi@bnu.edu.cn
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removed. So the node has CL�i�=NL− N̂L�i� loops with length
L passing through. The number of short loops in directed
network can be expressed in terms of powers of the
adjacency matrix. In particular, NL� 1

LTr AL, provided that
��maxi� j �m� � l

m ��� j
−mPijPj+m,i

−1 ��1 �11�. Because CL�i�=NL

− N̂L�i�, we can count the short loops on single nodes in any
networks.

Here, we focus on the distribution of CL�i� in different
networks. We will compare CL

r �i� of real networks with CL
c�i�

of the counterpart random networks and CL
e�i� of the corre-

sponding Erdős-Rényi �ER� random networks. The counter-
part random networks are a kind of uncorrelated random net-
works with the same number of in and out links in each node
as the real networks. The corresponding ER random net-
works are given with the same size and the total number of
links as the real networks. Specifically, the way we obtained
the counterpart random network is like a reshuffling process
�21�. First, we set the random counterpart simply the same as
the empirical one. Second, the main reshuffling process to
this random counterpart. We randomly pick two directed
links from the counterpart network, for example, one is from
node A to B and the other is from node C to D. Then we
rewired these two links by A to D and C to B. Hence, the
degree of these nodes would not be changed by this reshuf-
fling process while the links in this counterpart networks are
randomized. Clearly, after enough times of reshuffling pro-
cess �the second step�, we can obtain such counterpart ran-
dom networks with the same number of in and out degree in
each node as the empirical networks.

Of course, CL
r �i�, CL

c�i�, and CL
e�i� can be obtained by

CL�i�=NL− N̂L�i�. Actually, the expected value of CL
c�i� can

be gained by the formula based on the degree sequence. Mo-
tivated by the formula of the expected number of loops in the
uncorrelated random network �11,22�, we derive the ex-
pected number of loops on single nodes in undirected and
directed random networks.

For undirected random networks, the expected number
E�NL� of short loops with length L is given by �22�

E�NL� =
1

2L
	 
k�k − 1��


k�
�L

, �1�

where k is the degree sequence of the network and 
 · � rep-
resents the average value of a sequence. We can obtain the
expected number of short loops on a specific node as

E�CL�i�� =
1

2L
	a

b
�L

−
1

2L

 �a − ki�ki − 1���b − 4ki�

�b − 2ki�2 �L

,

�2�

where a=�h=1
N kh�kh−1� and b=�h=1

N kh.
For directed random networks, the expected number

E�NL� of short loops with length L can be obtained by �11�

E�NL� =
1

2L
	 
kinkout�


kin�
�L

. �3�

Like the undirected network, we also deduce a formula to
estimate the expected number of short loops on a specific
node i. The formula of E�CL�i�� is

E�CL�i�� =
1

L
	 c

d
�L

−
1

L
	 �c − ki

inki
out��1 −

ki
in

d−ki
out −

ki
out

d−ki
in�

d − ki
in − ki

out
�L

,

�4�

where c=�h=1
N kh

inkh
out and d=�h=1

N kh
in. To examine the validity

of our formula, we calculate the exact short loops number �8�
in directed and undirected random networks with prear-
ranged Poisson degree sequences and compare them with the
expected values from our formulas. The result shows our
formulas can perfectly predict the CL�i� of both undirected
and directed random networks with given degree sequences.
That is to say the distribution CL

c�i� can be represented by the
distribution of E�CL

c�i�� which can be simply calculated by
our formulas.

In Fig. 1, we compare the zipf plots of CL
r �i�, CL

c�i�,
CL

e�i�, and E�CL
c�i�� in four different networks including the

C. elegans’ neural network, the Littlerock food web network,
high technology company employees’ friendship network,
and the St. Mark food web network. If a node has no loop
passing through, CL�i�=0. In the zipf plot, this node will not
appear in the logarithmic axis. Hence, the shorter tail of the
line means all the loops are inclined to locate in several
specific nodes. In addition, the steeper slope of the line in
zipf plots indicates the distribution of CL�i� is more skewed,
which means that nodes are quiet different from each other in
loops number. If these two features are more significant, the
distribution of the CL�i� will be more heterogeneous. Com-
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FIG. 1. �Color online� The zipf plots of CL
r �i�, CL

c�i�, CL
e�i�, and

E�CL
c�i�� of four different networks including �a� C. elegans’ neural

network, �b� Littlerock food web network, �c� high technology com-
pany employees’ friendship network, and �d� St. Mark food web
network. In this figure, we use L=5 as example. The results for the
random networks are averaged by 100 times.
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paring the real networks to ER random networks, we find
that the loops are more heterogeneous in some real networks
such as neural networks and some food web networks. More-
over, from the CL

r �i� and CL
c�i�, we can easily find that the

degree sequence are not sufficient to describe the heteroge-
neity of loops distribution on nodes. In many cases, CL

r �i�
performs a more significant heterogeneity than E�CL

c�i�� and
CL

c�i�. However, loops distribute in some social networks al-
most the same as in the counterpart networks. A typical ex-
ample is given in Fig. 1�c�.

From the heterogeneous distribution of the loops in each
node, we can easily find that loops locate more unevenly in
some real networks than in counterpart random ones. That is
to say, some nodes of the real network are relatively rich in
loops while loops are sparse in some other nodes. This phe-
nomenon indicates that besides the total number, the detail
organization of these loops in real networks is quite different
from the counterpart random networks. If these nodes with
many loops tightly connect with each other in the same com-
munity, this community will be extremely rich in loops. In
the following section, we will discuss the phenomenon of
uneven loops location by studying the short loops in a spe-
cific kind of community of networks.

III. RICH LOOP CORE PHENOMENON

To investigate the detail organization of the self-avoiding
loops in a network, we will study the loops number of dif-
ferent communities. In this paper, we consider that a loop
belongs to a community only if all the nodes of the loops are
included in this community. For these real networks we are
about to analyze, because long loops are strongly related to
the size of a chosen community, short loops are the main
elements in the community. Therefore, we only consider
short loops. It has been investigated that many real networks
have fewer loops than the randomized counterparts in both
short loops and long loops such as C. elegans’ neural net-
work, Food Web networks, Power-grid networks, etc. �11�.
Here, we take some of these real networks to make a further
study of the loops in their communities.

First, we introduce a node removing process. In each step
t of the node removing process, we remove the node with the
smallest CL�i� in the network. It means that the node with
fewer loops passing through will be removed first. Specifi-
cally, CL�i� should be updated in each step. After N steps, we
can remove all the nodes from the network. If we want to
obtain a community with size n, the number of the removed
nodes should be t=N−n. Because the node about to be re-
moved in every step has the fewest loops among the remain-
ing nodes, the community obtained by this process has the
richest short loops among all the communities with the same
size. It is called the selected community in this paper, its
loops number is denoted as ML�n�. Obviously, ML�N�=NL
and ML�0�=0. If a network is greatly uneven in the loop
location, ML�n� will decrease slowly in the beginning while
decline dramatically in the end through out the node remov-
ing process.

We analyze the C. elegans’ neural network by the node
removing process as an example. In Fig. 2, we compare the
C. elegans’ neural network, the counterpart random networks
and the corresponding ER random networks. Although the
counterpart random networks have more short loops than
C. elegans’ neural network, it cannot compete with the C.
elegans’ neural network in some specific selected communi-
ties. For instance, the selected community with 50 nodes in
the C. elegans’ neural network has more short loops than that
in the counterpart random networks as in Fig. 2.

We define the loop density as the proportion of loops
number as the community size. So we can easily get the loop
density of the original network as NL /N. For a specific se-
lected community in the node removing process, the loop
density is ML�n� /n. To compare the loop density of the se-
lected communities and the original network, we define the
loop density ratio �L�n� as the proportion of the selected
community’s loop density and the original network’s loop
density;

�L�n� = 	ML�n�
n

��	NL

N
� =

ML�n�N
NLn

. �5�

We use an directed small-world network here to demon-
strate how �L�n� varies for different topologies. When p=0
in this artificial model, all the nodes are connected regularly
in a cycle and the direction of the links are all clockwise. If
p�0, some links are cut off and randomly added between
other nodes in this network by probability p. Clearly, there is
no short loop when p=0 and the number of short loops will
increase with the p. So when p is relatively small as 0.1,
there are only several short loops in this model. They inevi-
tably locate in some specific nodes while other nodes have
no short loop. As the p increases, the model becomes a di-
rected ER random network gradually. Therefore, the loop
location changes from heterogeneous to homogeneous with
the increase in p. How �L�n� response to this change are
reported in Fig. 3. We can see that if the loops locate un-
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FIG. 2. �Color online� The change in the loops number as the
nodes removing from three kinds of networks. In this figure, we
choose L=5 as a example. Furthermore, the size of selected com-
munity is n=N− t in each step t. The results for the random net-
works are averaged by 50 times.
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evenly in a network, �L�n� will reach a higher value. The
�L�n� are also employed to analyze the C. elegans’ neural
network in Fig. 4, where �L�n� of the counterpart random
networks turn out to be always lower than that of C. elegans’
neural network. This indicates that loops locate more un-
evenly in C. elegans’ neural network than in the counterpart
random networks.

Although many real networks have fewer short loops
compared to counterpart random models, the unevenness of
loop location will make some communities in real networks
more loopy than the corresponding communities in the coun-
terpart random networks. It can be detected by the ratio as

�L�n� =
ML

r �n�
ML

c�n�
, �6�

where n is the size of the selected community. For example,
the index will turn from �L�n��1 to �L�n��1 as nodes re-
moved in the C. elegans’ neural network in Fig. 2. Based on
the results above, we guess this phenomenon may not limit
in C. elegans’ neural network. We also investigate many
other real networks, some typical results are shown in Fig. 5.

As in Figs. 5�a�, 5�c�, and 5�e�, although these real net-
works, such as neural networks and some food web net-
works, have fewer total loops than the counterpart random
networks, some selected communities of them are more
loopy than that of counterpart random ones. Moreover, we
find that short loops with different lengths L perform the
same trend. If the loops with specific length L locate un-
evenly in the networks, loops with other lengths locate un-
evenly as well. However, not all the networks have this kind
of phenomenon as shown in Fig. 5�b�. Some real networks
with far fewer loops than the counterpart random networks
have �L�n��1 for all n. For example, the C. elegans’ meta-
bolic network belongs to this category. In addition, we find
that some social networks have more short loops than the
counterpart random ones as in Fig. 5�d�. These networks are
not discussed in Ref. �11�. This category includes the prison-
ers’ friendship network, high technology employees’ friend-
ship network, the family visit network, the flying-team part-
ner choosing network, the dining table partner choosing
network, and so on �23�. Finally, we use the index �L�n� to
detect a ER random network with 100 nodes and 800 links.
The result in Fig. 5�f� shows that �L�n�=1 approximately.

The community with extremely large loops number men-
tioned above is called rich loop core. How to find it in a
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FIG. 3. �Color online� How �L�n� response to the change in p in
the directed small-world networks. Here, we use L=3, N=100, and
K=5 as an example. The results are averaged by 50 times.
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FIG. 4. �Color online� The loop density ratio �L�n� of three
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as an example. It is clear that loops locate more unevenly in C.
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FIG. 5. �Color online� Typical results of comparing selected
communities’ loops of many networks to that of the counterpart
random models. The results are averaged by 50 times. �a� C. el-
egans’ neural network, �b� C. elegans’ metabolic network, �c� and
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network is also an interesting question. In this paper, we
simply consider the rich loop core appears at the maximum
�L�n�, which means the rich loop core will have highest loop
density than any other communities in the networks. Some
typical results are shown in Fig. 6. The Littlerock food web
and the C. elegans’ metabolic network have significant rich
loop cores which indicate they have much higher loop den-
sity community compared with the original networks. The C.
elegans’ neural network and the St. Mark food web have
such rich loop cores as well. On the contrary, this phenom-
enon is not so obvious in company employees’ networks and
large degree ER random networks. For the C. elegans’ meta-
bolic network, the high loop density ratio is due to the small
number of total loops. These loops inevitably locate in sev-
eral specific nodes, so the loops density in the selected com-
munity will be very large compared with the original net-
work. Furthermore, we analyze the rich loop cores of the
food web and neural networks. It is interesting that most of
the nodes in the cores are from interneurons in C. elegans’
neural network and from microorganisms in food web net-
works. Specifically, the rich loop cores of C. elegans’ neural
networks have different sizes n for different loop lengths L.
For example, n=31 when L=3, n=38 when L=4, n=50
when L=5, and n=51 when L=6. These rich loop cores
share 30 nodes and 24 of them are interneurons. The C.
elegans’ neural networks are composed by sensory neurons,
interneurons and motor neurons. Most interneurons are in the
nerve ring ganglia, their main function is to process signals

�24,25�. Likewise, the rich loop cores in St. Mark food web
networks are n=20 when L=3, n=22 when L=4, n=24
when L=5, and n=24 when L=6. These rich loop cores
share 14 nodes and ten of them are microorganisms. In the
food web networks, the microorganisms are the main ele-
ment in microbial loops which are strongly related to fixed
carbon repacking and recovery path of ecosystem �20�.

IV. MEASUREMENT FOR UNEVENNESS
OF LOOP LOCATION

In order to quantify how unevenly loops locate in the
networks, we propose an index which bases on the node
removing process. In order to simplify the computing com-
plexity, we do not update CL�i� in each step during the node
removing process in this section. We test and find the result
obtained in this way is sufficient to represent that by updat-
ing CL�i� in each step statistically. Moreover, we remove the
nodes based on the attacking rate p. For example, if p=0,
no node is removed and the loop number is NL. If p=0.1,
we just remove �pN�ceil nodes from the network and the
loop number is ML�N− �pN�ceil�. Here, � · �ceil represents the
operation of rounding upward. Then, we use AL�p�=ML�N
− �pN�ceil� /NL to normalize the loop number of each commu-
nity so that AL�p�, which is corresponding to the loop num-
ber, declines from 1 to 0 through out the node removing
process as shown in Fig. 7. Again, we use L=5 as an ex-
ample in Fig. 7.

If a network is significantly uneven in the loop location,
AL�p� will decline slowly in the beginning while dramati-
cally in the end during the node removing process. On the
contrary, if loops locate evenly in the network, the AL�p� will
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with 100 nodes and 800 links.
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decline almost the same as the corresponding ER random
networks. Therefore, the unevenness of loop location can
be measured by the difference between the real network and
the corresponding ER random network. Here, we use IL

r �p�
=AL

r �p�−AL
e�p� to estimate the difference. So the unevenness

of loops location can be represented by the index as

RL = �
0

1

IL�p�dp , �7�

where −1�RL�1. The severer the unevenness is, the larger
the index RL will be. Of course, the index RL can also be
used in analyzing the counterpart random network.

In fact, the index RL is the area between the lines of
the real network and the ER random network in Fig. 7. It
can be seen that the real networks and the counterpart ran-
dom networks can be different in the unevenness, as the
index RL

r �RL
c . Typically, if the real network is very sparse

in the links, the network has only small number of loops.
This will lead to a phenomenon that some part of the net-
work has some loops, while other part has no loop at all.
However, the corresponding ER random network has the
same condition too, so RL will be a small value under this
circumstance. Whether this uneven location of loops results
from the specific structure of the real network or from the
small degree as the ER random network can be estimated
from the index RL. In Fig. 7�d�, we use the index RL
to investigate a ER random network with small degree as
K=2. The result shows that the three lines are almost the
same meaning that RL�0.

Additionally, we consider several more directed real
networks �23�. As mentioned above, although each network
has different kinds of short loops based on length L, these
loops perform almost the same. We use average RL to
represent the unevenness in loops location. It can be gained

by R̄= 
RL� and the L=3,4 , . . . ,Lmax where Lmax=8 accord-

ing to Ref. �11�. The index R̄ for these real networks are

given in Table I. From R̄r, how significant the unevenness in

loops location is can be known. By comparing R̄r and R̄c,

we can distinguish whether this unevenness results from

the degree sequence. In Table I, it can be seen from R̄r
that the C. elegans’ neural network, C. elegans’ metabolic
network and some food web networks are significantly
uneven in loop location. The social networks, Escherichia
Coli’s metabolic network and some other food web net-
works do not have such great unevenness. In fact, the
number of different species will affect the loop location in
food web networks. For example, too many microorganisms
will make the loops more even and too many metazoans
will reduce the total loops number. Additionally, both the
C. elegans’ metabolic network and the Escherichia Coli’s
metabolic network have very few loops, but the degree se-
quence and the total links of the former one allows the coun-
terpart random and the ER random networks to have much

more loops while the latter one does not. Hence, the R̄r of
these two metabolic networks are different. Moreover, com-

paring R̄r and R̄c in Table I, it can be found that the degree
sequence is not sufficient to describe the unevenness in loops
location. It is clear that the C. elegans’ neural network,
Littlerock, and St. Mark food web networks are more uneven
in loops location than the counterpart networks. That is why
their �L�n� can be larger than 1.

V. CONCLUSION

The previous works on the loops mainly focus on the total
number of loops and the dynamic effect of the loop structure.
However, the loop location is also very important in net-
works. Generally, loops tend to locate in some specific nodes
in some real networks, which means some communities of
the network are extremely rich in loops while the loops are
relatively sparse in other parts. If this uneven location is
significant enough, the rich loop core phenomenon can be
formed in some real networks.

The rich loop core phenomenon is meaningful for the
typical function of real networks. For instance, the loop
structure is strongly related to the self-sustained activities in
neural networks, so the rich loop core may help to under-
stand the functional regions in the neural networks. For the

TABLE I. Results of the analysis of networks based on index R̄.

Network Size Links R̄r R̄c R̄r− R̄c

C. elegans’ neural 306 2359 0.436 0.317 0.119

C. elegans’ metabolic 453 2040 0.468 0.337 0.131

E. coli’s metabolic 896 958 −0.021 −0.002 −0.019

Mondego FW 46 400 0.231 0.257 −0.026

Michigan FW 39 221 0.194 0.207 −0.013

Littlerock FW 183 2494 0.672 0.439 0.233

St. Marks FW 54 356 0.378 0.256 0.122

Prisoners 67 182 0.169 0.004 0.165

Flying-teamers 48 351 0.108 0.060 0.048

Company employees 36 147 0.219 0.163 0.056

ER random 0 0 0
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food web networks, almost all the loops in rich loop cores of
food web networks are microbial loops and play an impor-
tant part in fixed carbon repacking and recovery path of eco-
system. In addition, this uneven location of loops may pro-
vide a way to study the community detection in directed
networks, which asks for further research.
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